Software System Design and Implementation

Case Study: The Embedded Language Accelerate

Trevor L. McDonell
The University of New South Wales

School of Computer Science & Engineering
Sydney, Australia

COMP3141 18s1

Produce better software with less effort

- Better software
- Fewer defects (e.g. security defects)

- Software that is more usable

* Less effort
- Shorter development time
- Fewer programmers

- Less-specialised programmers

Produce better software with less effort

* Types help in design & implementation
- Program properties in types
- Guide the design & imply programs

- Prevent defects in the implementation

Parallel programming

« Perform many computations simultaneously in order to reduce overall
processing time

- Break large problems into smaller problems, solve each concurrently

- Now the dominant paradigm for increasing processor performance (i.e.
multicore CPUs)

Today's hardware Is too hard!

- If it costs X (time, money, pain) to develop an efficient single-threaded
algorithm, then...

- Multithreaded version costs 2x
- PlayStation 3 Cell version costs 5x

- Current GPGPU version costs 10x or more

‘———'I

2 UNSW

TN U\NWHV(X cwsoummues

Can we have

parallel programming
WITH
less effort’”/

E THE UNIVERSITY OF NEW SOUTH WALES
SYDNEY « CANJIRRA « AUSTRALIA

Expressive type

Composite Immutable ,
system & inference

data structures structures

Haskell Strong static typing

Higher-order tunctions
& closures

Principled, pure,
functional programming
Boxed values

Strictly 1solating

Polymorphism
! P side-ellects

& generics

2 UNSW

THE UNIVERSITY OF NMMLES
AAAAAAAAAAAAAAAAAAAAAAA

. . Control flow
Function pointers

Memory access patterns

Haskell

Decomposition

Data distribution

/ i \

Efficient code?

v v

—I0W 200Ut
domain specific languages
WITH
specialised code generation’/

|[demo]

UNSW

THE UNIVERSITY OF NEW SOUTH WALES
SYDNLY « CANJIRRA « AUSTRALIA

Smootﬁﬁe cellular automata

stable fluid flow

- d6b821d937a4170b3c4f8ad93495575d: saitek1

d0e52829bf7962ee0aa90550ffdcccaa: laural230
494a8204b800c41b2da763f9bbbcc462: lina03
d8ff07¢52a95b30800809758f84ce28c: Jenny10
e81bed02faa9892f8360c705241191ae: carmen89
46f7d75718029de99dd81fd907034bc9: mellon22
0dd3c176¢f34486ec00b526b6920b782: helena04
9351c4bc8c8bal7b58d5a6a1f839f356: 85548554
9¢36¢5599f40d08f874559ac824d091a: 585123456
4b4dce6c91b429e8360aa65f97342e90: 567890
3aa561d4c17d9d58443fc15d10cc86ae: momo55

Recovered 150/1000 (15.00 %) digests in 59.45 s, 185.03 MHash/sec

Nn-body gravitational simulation

Péssvvord “recovery” (MD5 dictionary attackﬂ
= A U\ Lt B

Canny edge detection

Embedded domain-specific languages

How to write specialised code with less effort

Domain specific languages

* Are restricted languages
- Generally have specialised features to a particular application domain

- HTML, Matlab, SQL, postscript ...

- Embedded domain specific languages

- Implemented as libraries in the host language, so can integrate with the
host language

- Reuse the syntax of the host language (as well as parser, type checker...)

- The host language can generate embedded code

2 UNSW

U\RSITVC‘ SOUTHM

Shallow vs. deep embeddings

« A shallow embedding directly executes functions in the host language
- We don’t get access to the program AST, we can only evaluate it

- Easier to write — uses the binding constructs of the host language

- A deeply embedded reifies the program as a data structure
- Can manipulate the entire program AST

- But requires explicit handling of variables

Recall: the type-safe evaluator

data Expr t where I
Const :: Int -> Expr Int
Add :: Expr Int -> Expr Int -> Expr Int
Equal :: Egs=>Exprs ->Exprs -> Expr Bool

If Expr Bool -> Expre ->Expre ->Expre

Type-indexed €Xpressions

«——N

eval :: Exprt->t

eval (Constc) =c

eval (Add e1 e2) =eval el + eval e2
«and so on»

———

Type-safe evaluation

——

——

UNSW

TNU\RSITYG SOUTHM(S

Recall: the type-safe evaluator

- An embedded domain specific language for (very simple) arithmetic!
- The language specifies a limited set of operations

- Evaluator runs programs written in that language

« An example of a deeply embedded domain specific language
- Operations in the language do not directly issue computations

- Instead we reify the computation as a data structure — an abstract syntax
tree

Extending the type-safe evaluator

?
Support for more types” foo - Num a

=>Exp a->Expa->Expa

- Type safe operations, polymorphism

Writing programs in the language?
fooxy=2"(x+Yy)

- Don’t want to write with explicit constructors

let x =
Bindings and scope? lety =fooxy
in ...

Evaluating expressions on the CPU/GPU

- float foo(float x, float
- What operations are allowable? {oa oo(float x, float y)

2 UNS

THE UNIVERSITY OF NEW SOUTH WALES
SYDNEY « CANJIRRA « AUSTRALIA

The Accelerate language

Design of an embedded language

Accelerate

- An embedded domain-specific language for high-performance computing in
Haskell

Copy result back to Haskell

A

Haskell/Accelerate
program

L |

L —

Reify and optim\
Accelerate program N

Compile and run on
the CPU/GPU

Y Target code JI

Accelerate 1s a domain specific language

« Array computations + Everything else

Mandelbrot fractal

UNSW

THE UNIVERSITY OF NEW SOUTH WALES
SYDNEY « CANJIRRA « AUSTRALIA

Data parallelism

* Processors compute the same operation on many different data elements

array In

array OuUt

map (+1) arr

+1

n+1

UNSW

U\‘ENTVG SOUTHM

Accelerate

- Computations take place on dense, multidimensional arrays

- Parallelism is introduced in the form of collective operations on arrays

S —>
Arays N ——>

—_—

Accelerate
computation

—_—
—_—

Arrays out

Accelerate arrays

 Arrays have two type parameters
- The dimensionally (aka shape) of the array

- The element type of the array

Array sh e

- But, specialised hardware such as GPUs often have restrictions
- Parallel operations (kernels) can not launch more parallel operations™

- Can we encode these restrictions into the language?

Accelerate arrays

- Allowable element types are members of the Elt class
- ()
- Int, Int32, Int64, Word, Word32, Word64 ...
- Float, Double
- Char
- Bool
- Array indices formed from Z and (:.)

- Tuples of all of these, e.g. (Bool, Int, (Float, Float))

- To meet hardware restrictions, there are no nested arrays in Accelerate

Accelerate computations

» The types of array operations also statically excludes nested computations
- A stratified language of scalar (Exp) and array (Acc) operations
- Array computations consist of many scalar operations executed in parallel

- Scalar operations can not contain further parallel operations

\ map (+1) xs
function to apply iNnput array

at each array element

Accelerate computations

- What is the type of map?

- map is an instance of the collective operations Acc, applying the scalar
function in Exp to each element (in parallel)

- Shape and Elt encapsulate allowable array index and element types

map :: (Shape sh, Elt a, Elt b)
=> (Exp a -> Exp b)
-> Acc (Array sh a)
-> Acc (Array sh b)

Embeddmg map (+1) xs

- Acc is a GADT whose constructors represent collective operations

- Writing a program with the Accelerate library amounts to constructing an
AST representing that program

- The AST can later be evaluated, or transformed into C code, etc...

map :: ... ->Acc (Array sh b)
map = Map

data Acc a where
Map :: (Shape sh, Elt a, Elt b)
=> (Exp a -> Exp b)
-> Acc (Array sh a)
-> Acc (Array sh b)
«and many more»

Embeddmg map (+1) xs

- Exp is a GADT whose constructors represent scalar operations

data Exp a where
Const ::Eltc
=>C
->EXpC

PrimApp :: (Elt a, Elt r)
4 =>PrimFun(a->r)

/ -> EXp a

->EXpr

«and many more»

Apply primitive scalar function: (+), (¥) ...

Embeddmg map (+1) xs

- Overloaded the standard typeclasses to reflect arithmetic expressions

- The Num instance for Exp terms allows us to reuse standard operators like
(+) and (%)

instance Num (Exp Int) where
X + Yy = PrimAdd numType PrimApp tup2 (X, y)

Embedding

- Not all operations are valid for all types

(+) :Numa =>a->a->a
div :: Integrala=>a->a->a
sin :: Floatihnga=>a ->a

« How do we evaluate this?

=>Expa->a

eval = (Num a, Integral a G a)

Embedding

« Use explicit dictionary passing to support ad-hoc polymorphism
- Type checker chooses the correct instance when creating the dictionary

- Pattern matching on the dictionary constructor makes the class
constraints available

data IntegralDict a where
IntegralDict :: (Integral a, Num a, Ega...)
=> IntegralDict a

class (Num a, IsScalar a) => IsNum a where
numType :: NumType a

Instance IsNum Int where
numType = ...

2 UNS

THE UNIVERSITY OF NEW SOUTH WALES
SYDNEY « CANJIRRA « AUSTRALIA

GADTs

- How does the dictionary trick work?

- With a standard algebraic data type the following are equivalent:

foo::Fooa->a->a
foo X = X+1

bar :: Fooa->a->a
bar (Foo _) x = x+1

- But, with GADTs this is not the case

data Foo a where
Foo :: Num a=>a->Foo0 a

So far...

+ Using types to guide the design
- Only supports operations we know how to execute on restricted hardware

- Stratification encodes the concept of data parallelism

- Type-safe, polymorphic operations
- GADTs for a “type safe evaluator” style representation

- Explicit dictionary passing to support ad-hoc polymorphism

- [Deeply] embedded languages reuse the host language syntax
- Smart constructors that build AST terms

- Overload standard typeclasses to reflect arithmetic operations

SSSSSS

Properties In types

Encoding the type and scope of free variables

Surface language

« Our Acc and Exp terms are defined in Higher Order Abstract Syntax (HOAS)

- Use the binding constructs of the host language

foo::Expa->Expb
foox =...

- But...
- Does not explicitly represent variables

- Can not peek into function bodies: can only apply functions

Internal language

- Need an explicit representation of bound and free variable names
- Implies an explicit environment of bound terms

- Allows us to inspect function bodies (intensional analysis)

Can not depend on free scalar variables

data PreOpenAcc acc aenv a where \l -

Avar :: Arrays a => Idx aenv a -> PreOpenAcc acc aenv a <)

data PreOpenExp acc env aenv t where
Var . Eltt =>Ildxenvt ->PreOpenExp acc env aenv t

Environments

- Environments keep track of what is in scope

- To simplify code generation, define the binding as only being in scope
while evaluating the body (in contrast to Haskell, let is not recursive)

scope of X

foo x = /

ot w o /scope of y
lety =42 in :
letz=y*2in scope of z
X+VY+2 s ‘/

N

W~ X : 1¥~gcope of w

Environments

- Environments keep track of what is in scope

data Val env where
Empty :: Val ()
Push ::Val env ->t->Val (env, t)

* A heterogenous snoc-list —_—

- Type: unit represents the empty environment, and the pair type for
environments extended by an additional type

- Value: snoc-list of terms that form the environment, newest on the right

2 UNSW

m U\ma NSOUNML(S

De Bruijn indices

* A nameless way to represent variables
- No variable capture: alpha-equivalence is just syntactic equivalence
- Treat the environment as a stack of terms

- The de Bruijn index just counts its place in the stack

Type list of terms
INn the environment

v

data ldx env t where -- a vgiet
Zeroldx :: ldx (env, top) top -- #

fl the top of thd env; or

Can not create an index
iINnto an empty environment

De Bruijn indices

 Scalar function abstraction binds free variables
- These are only introduced as arguments to collective operations

- This restriction simplifies code generation: no closure conversion required

data PreOpenFun acc env aenv b where
Lam :: Elta
=> PreOpenFun acc (env, a) aenv b
-> PreOpenFun acc env aenv (a->Db)

Body :: Eltr
=> PreOpenExp acc env aenv r
-> PreOpenFun acc env aenv r

De Bruijn indices

add :: Exp Int -> Exp Int -> Exp Int
add xy=x+y

\add =\X ->\y -> PrimAdd numType PrimApp tup2 (x,y)

Introduce a new
nameless variable :: PreOpenExp acc (((), Int), Int) aenv Int

N\ /

add = Lam (Lam (Body (
PrimAdd (Integr
"PrimApp

Tuple (NilTup SnocTup r (Succldx Zeroldx))
| “SnocTup (Var Zerol

Wraps a de Bruijn index

De Bruijn indices

* |Introduce a new nameless variable into the environment
- Let-nodes represent sharing of sub terms

- The type requires the binding is only in scope when evaluating the body

data PreOpenExp acc env aenv t where
Var :: Eltt=>Idx envt->PreOpenExp acc env aenv t

Let :: (Elt bnd, Elt body)
=> PreOpenExp acc env aenv bnd
-> PreOpenExp acc (env, bnd) aenv body
-> PreOpenExp acc env aenv bodyR

)

Only in scope when
evaluating the body

Environment projection

- How do we get a value out of the environment?
- Recall that the environment is a heterogenous list

- The index needs to recover both the position and type of the element

Under some junk

prj&dx envt->Valenv ->t

prj (Succldx idx) (Push env _) = prj idx env
prj Zeroldx (Push _ v)=v
prj j Empty = error "impossible" <— why?

/St

At the top because Empty :: Val ()

Exercise: count the uses of each variable

 Traverse an expression searching for Var nodes

- Generate a fresh name for each new binding

- Use an environment to map names to counts

letx =7
let x = x+1

X+y+2

IN
N

lety =x"3 + xin

de Bruijn notation

>

letv2 =7
let v1 = v2+1

letvO=v1*3 + vl in

vl +v0 + 2

iN

IN

EW SOUTH WALES
RRA « AUSTRALIA

THE UNIVERSITY OF NEW S
SYDNEY « CANDT

Exercise: count the uses of each variable

type Name =...
data Count = Count { unique :: Int, counts :: Map Name Int }

data Ref env where 4—— Sjmilar to Val
Top :: Ref ()

Pop :: Ref env -> Name -> Ref (env, s)

fresh :: State Count Name ‘ encapsulate local
touch :: Name -> State Count () mutable state

lookupName :: Ref env -> |ldx env t -> Name
lookupName (Pop _ n) Zeroldx =n
lookupName (Pop s _) (Succldx ix) = lookupName s ix

\

similar to prj

@ THE UNIVERSITY OF NEW SOUTH WALES
w SYDNLY « CANJIRRA » AUSTRALIA

Exercise: count the uses of each variable

- Traverse the expression looking for Let and Var nodes

- Must begin with a closed expression

usesOf :: OpenExp env aenv t -> Ref env -> State Count ()
usesOf exp env = case exp of
Let bnd body -> do
var <- fresh
usesOf bnd env
usesOf body (Pop env var)

Varidx ->do
touch (lookupName env idx)

Summary

- We use GADTs to very precisely specify types

data Val env where
Empty :: Val ()
Push ::Val env’'->t-> Val (env’, t)

data Idx env t where -- a variable is either
Zeroldx :: ldx (env’, top) top -- at the top of the env; or
Succldx :: Idx env’ s -> ldx (env’, junk) s -- under some junk

prj :: ldx envt->Val env ->t

prj (Succldx idx) (Push env _) = prj idx env
prj Zeroldx (Push _ v)=v

prj _ Empty = error "impossible"

EW SOUTH WALES
RRA « AUSTRALIA

THE UNIERSITY OF NEW S
SYDNLY « CANOI

Executing embedded programs

Beyond the interpreter

L ast time...

- Embedded languages
- Restricted languages
- Can reuse host language syntax (typeclass overloading)

- Host language can compensate for restrictions in the embedded language

- Encoding properties in types
- Use types to help guide a user in designing [data-parallel] programs

- Hardware restrictions require no nested arrays: use a separate language
for scalar (Exp) vs. collective array (Acc) operations

2 UNSW

U\RSITVC‘ SOUTHM

Executing programs

- The type-safe evaluator interprets programs step-by-step

- Walk the AST recursively evaluating sub terms

eval :: Exprt->t

eval (Constc) =c

eval (Add e1 e2) =eval el + eval €2

eval (Egel1 e2) =eval el ==eval e2

eval (If p e1 e2) =if eval p then eval ef
else eval e2

Executing programs

- Instead of interpreting the expression
- Convert the program into a form suitable for, say, GPU execution

- Walk the AST generating C code or similar, then execute that code

run :: ExecOpenAcc aenv a -> Val aenv -> a
run (Map objectcode gamma) aenv = ...
run (Fold objectcode gamma) aenv = ...

E EW SOUTH WALES
RRA « AUSTRALIA

THE UNIERSITY OF NEW S
SYDNLY « CANOI

Executing programs

- Now we have a runtime compiler!

- Since compilation happens at program runtime, having strong types in the
embedded language means there are fewer possible runtime errors

- But, must deal with code generation, caching, linking, calling the compiled
code ...

2 UNSW

U\RSITVC‘ SOUTHM

Algorithmic skeletons

- Collective operations in Acc are templates encapsulating specific behaviour
- Parameterised by the scalar function they apply

- Instantiate the operation by providing types and scalar expressions at

predefined points
e.g. free variables

void map
(
template _
holes

X

for (inti=0;i<end; ++i){ apply embedded
x = arrln[i]; |

arrOut[i] = $function(4/ scalar function

}

g EW SOUTH WALES
RRA « AUSTRALIA

THE UNIVERSITY OF NEW S
SYDNEY « CANDT

Static Single Assignment (SSA) form

« An intermediate representation where each variable is assigned exactly once,
and every variable is defined before it is used

- Designed to make optimisations efficient for imperative languages

- A static property of program text, not a dynamic execution property

1 1

int relu(int v) { Tv<0 Tv<0
f (v<0){) T |F , T
\ v=0 v<-0
return v v 3 \ 3
} return v u<- (0, v)
return u

CFG SSA

Static Single Assignment (SSA) form

 Closely related to the lambda terms used by functional programs

- SSA is Functional Programming
Andrew Appel

- A Functional Perspective on SSA Optimisation Algorithms
Manuel M. T. Chakravarty, Gabriele Keller, Patryk Zadarnowski
- We can translate our first-order scalar language directly into SSA form

- LLVM uses a statically typed intermediate representation in SSA form

Code generation

« Scalar code generation becomes a source-to-source translation
- Translation preserves type information
- Well typed source programs always generate well-typed target code

- The llvm-hs library contains the necessary C++ bindings to LLVM

2 UNSW

U\‘ENTVG SOUTHM

Code generation (+1)

« Scalar code generation is a source-to-source translation
- Convert accelerate expressions into form closer to LLVM instruction set

- Lower type-level types into value-level types

plus1 = Lam (Body (
PrimAdd (IntegralNumType (...))
"PrimApp
Tuple (NilTup "SnocTup (Var Zeroldx)
“SnocTup (Const 1))))

accelerate

Code generation f-then-else

- Branches and loops require insertion of $-nodes

- Need to create, keep track of basic block labels to use as branch targets

monad for fresh names, etc.

e

-- create a new basic block 4
newBlock :: String -> CodeGen Block

-- branch instructions return the block they came from
br :: Block -> CodeGen Block
cbr :: IR Bool -> Block -> Block -> CodeGen Block

-- pick value depending on incoming edge
phi :: Elt a => [(IR a, Block)] -> CodeGen (IR a)

Runtime linking

 Finally, link the JIT compiled code into the running application

- We compile into a standard object file, rather than as a shared library
- ELF (*nix): /usr/include/elf.h

- MachO (MacQOS): /usr/include/mach-o/loader.h

- COFF (Windows): \ (V) /

Mach-O file format

Header

Load commands

Segment command 1

Segment command 2

Data

Segment 1

Section 1 data

Section 2 data

Section 3 data

Segment 2

Section 4 data

Section 5 data

Section n data |

T

Relocations

« The process of assigning load addresses to position independent code
- updates addresses/offsets from relocating the object code

- resolving symbols to system library functions such as sin()

|[demo]

UNSW

THE UNIVERSITY OF NEW SOUTH WALES
SYDNLY « CANJIRRA « AUSTRALIA

Relocations

« The process of assigning load addresses to position independent code
- updates addresses/offsets from relocating the object code

- resolving symbols to system library functions such as sin()

* Intermediate jump islands can be used for > 32-bit displacement

- initial 32-bit displacement to the jmp island, followed by long jump to
actual target address

0x0000000000000000 # target address
— imp *-14(%rip) # relative instruction pointer

Summary

- Embedded domain specific languages are restricted languages
- Reduce effort by generating code that embodies specialised knowledge

- The embedding partly compensates for this restriction be seamlessly
integrating with the host language

- The host language can generate embedded code

 Types can be used to...
- Encode properties and restrictions into the language
- This can statically prevent writing programs which can not be compiled

- Improve safety by eliminating sources of runtime failure

2 UNSW

TN U\ RS"VC‘ ﬁ)UIHM

Accelerate

- Available on Hackage (hackage.haskell.org):

- Core language: accelerate

- CPU backend: accelerate-llvm-native

- NVIDIA GPU backend: accelerate-llvm-ptx

- Examples: accelerate-examples

 More information & short tutorial:

- http://www.acceleratehs.org

« Contributions welcome! A A

http://hackage.haskell.org
http://hackage.haskell.org/package/accelerate
http://hackage.haskell.org/package/accelerate-llvm-native
http://hackage.haskell.org/package/accelerate-llvm-ptx
http://hackage.haskell.org/package/accelerate-examples
http://www.acceleratehs.org/

