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Produce better software with less effort

• Better software


- Fewer defects (e.g. security defects)


- Software that is more usable


• Less effort


- Shorter development time


- Fewer programmers


- Less-specialised programmers



Produce better software with less effort

• Types help in design & implementation


- Program properties in types


- Guide the design & imply programs


- Prevent defects in the implementation



Parallel programming

• Perform many computations simultaneously in order to reduce overall 
processing time


- Break large problems into smaller problems, solve each concurrently


- Now the dominant paradigm for increasing processor performance (i.e. 
multicore CPUs)



Today’s hardware is too hard!

• If it costs X (time, money, pain) to develop an efficient single-threaded 
algorithm, then…


- Multithreaded version costs 2x


- PlayStation 3 Cell version costs 5x


- Current GPGPU version costs 10x or more

Tim Sweeney (Epic Games) 
High Performance Graphics, 2009



Can we have 
parallel programming 

with 
less effort?



Haskell

Boxed values

Composite 
data structures

Immutable 
structures

Polymorphism 
& generics

Strictly isolating 
side-effects

Principled, pure, 
functional programming

Higher-order functions 
& closures

Expressive type 
system & inference

Strong static typing



Haskell

multicore 
CPU
GPUs

Cluster

Function pointers Control flow

Memory access patterns

Data distribution

Decomposition

Efficient code?



How about 
domain specific languages 

with 
specialised code generation?



[demo]







ray tracing

Mandelbrot fractal

n-body gravitational simulation

Canny edge detectionSmoothLife cellular automata

stable fluid flow

...
d6b821d937a4170b3c4f8ad93495575d: saitek1
d0e52829bf7962ee0aa90550ffdcccaa: laura1230
494a8204b800c41b2da763f9bbbcc462: lina03
d8ff07c52a95b30800809758f84ce28c: Jenny10
e81bed02faa9892f8360c705241191ae: carmen89
46f7d75718029de99dd81fd907034bc9: mellon22
0dd3c176cf34486ec00b526b6920b782: helena04
9351c4bc8c8ba17b58d5a6a1f839f356: 85548554
9c36c5599f40d08f874559ac824d091a: 585123456
4b4dce6c91b429e8360aa65f97342e90: 5678go
3aa561d4c17d9d58443fc15d10cc86ae: momo55

Recovered 150/1000 (15.00 %) digests in 59.45 s, 185.03 MHash/sec

Password “recovery” (MD5 dictionary attack)



Embedded domain-specific languages
How to write specialised code with less effort



Domain specific languages

• Are restricted languages


- Generally have specialised features to a particular application domain


- HTML, Matlab, SQL, postscript …


• Embedded domain specific languages


- Implemented as libraries in the host language, so can integrate with the 
host language


- Reuse the syntax of the host language (as well as parser, type checker…)


- The host language can generate embedded code



Shallow vs. deep embeddings

• A shallow embedding directly executes functions in the host language


- We don’t get access to the program AST, we can only evaluate it


- Easier to write — uses the binding constructs of the host language


• A deeply embedded reifies the program as a data structure


- Can manipulate the entire program AST


- But requires explicit handling of variables



Recall: the type-safe evaluator

data Expr t where
  Const ::         Int                             -> Expr Int
  Add   ::         Expr Int  -> Expr Int           -> Expr Int
  Equal :: Eq s => Expr s    -> Expr s             -> Expr Bool
  If    ::         Expr Bool -> Expr e   -> Expr e -> Expr e

Type-indexed expressions

eval :: Expr t -> t
eval (Const c)   = c
eval (Add e1 e2) = eval e1 + eval e2
  «and so on»

Type-safe evaluation

A very simple DSL!



Recall: the type-safe evaluator

• An embedded domain specific language for (very simple) arithmetic!


- The language specifies a limited set of operations


- Evaluator runs programs written in that language


• An example of a deeply embedded domain specific language


- Operations in the language do not directly issue computations


- Instead we reify the computation as a data structure — an abstract syntax 
tree



Extending the type-safe evaluator

• Support for more types?


- Type safe operations, polymorphism


• Writing programs in the language?


- Don’t want to write with explicit constructors


• Bindings and scope?


• Evaluating expressions on the CPU/GPU


- What operations are allowable?

foo :: Num a
    => Exp a -> Exp a -> Exp a

foo x y = 2 * (x + y)

let x =
  let y = foo x y
  in  ...

float foo(float x, float y)
{
    ...



The Accelerate language
Design of an embedded language



Accelerate

• An embedded domain-specific language for high-performance computing in 
Haskell

Haskell/Accelerate 
program

Target code

Compile and run on 
the CPU/GPU

Copy result back to Haskell

Reify and optimise 
Accelerate program



Accelerate is a domain specific language

• Array computations  • Everything else

ray tracing

=(

Mandelbrot fractal



• Processors compute the same operation on many different data elements

Data parallelism

2 3 41 … n

+1 +1 +1 +1 +1

3 4 52 … n+1

array in

array out

map (+1) arr



Accelerate

• Computations take place on dense, multidimensional arrays


- Parallelism is introduced in the form of collective operations on arrays

Accelerate 
computationArrays in Arrays out



Accelerate arrays

• Arrays have two type parameters


- The dimensionally (aka shape) of the array


- The element type of the array


• But, specialised hardware such as GPUs often have restrictions


- Parallel operations (kernels) can not launch more parallel operations*


- Can we encode these restrictions into the language?

Array sh e



Accelerate arrays

• Allowable element types are members of the Elt class


- ()


- Int, Int32, Int64, Word, Word32, Word64 …


- Float, Double


- Char


- Bool


- Array indices formed from Z and (:.)


- Tuples of all of these, e.g. (Bool, Int, (Float, Float))


• To meet hardware restrictions, there are no nested arrays in Accelerate



Accelerate computations

• The types of array operations also statically excludes nested computations


- A stratified language of scalar (Exp) and array (Acc) operations


- Array computations consist of many scalar operations executed in parallel


- Scalar operations can not contain further parallel operations

map (+1) xs

input arrayfunction to apply 
at each array element



Accelerate computations

• What is the type of map?


- map is an instance of the collective operations Acc, applying the scalar 
function in Exp to each element (in parallel)


- Shape and Elt encapsulate allowable array index and element types

map :: (Shape sh, Elt a, Elt b)
    => (Exp a -> Exp b)
    -> Acc (Array sh a)
    -> Acc (Array sh b)



Embedding

• Acc is a GADT whose constructors represent collective operations


- Writing a program with the Accelerate library amounts to constructing an 
AST representing that program


- The AST can later be evaluated, or transformed into C code, etc…

map :: … -> Acc (Array sh b)
map = Map

data Acc a where
  Map :: (Shape sh, Elt a, Elt b)
      => (Exp a -> Exp b)
      -> Acc (Array sh a)
      -> Acc (Array sh b)
  «and many more»

map (+1) xs



Embedding

• Exp is a GADT whose constructors represent scalar operations

data Exp a where
  Const   :: Elt c
          => c
          -> Exp c

  PrimApp :: (Elt a, Elt r)
          => PrimFun (a -> r)
          -> Exp a
          -> Exp r

  «and many more»

Apply primitive scalar function: (+), (*) … 

map (+1) xs



Embedding

• Overloaded the standard typeclasses to reflect arithmetic expressions


- The Num instance for Exp terms allows us to reuse standard operators like 
(+) and (*)

instance Num (Exp Int) where
  x + y = PrimAdd numType `PrimApp` tup2 (x, y)
  ...

map (+1) xs



Embedding

• Not all operations are valid for all types


• How do we evaluate this?

(+) :: Num a      => a -> a -> a

eval :: (Num a, Integral a, Floating a) => Exp a -> a

(+) :: Num a      => a -> a -> a
div :: Integral a => a -> a -> a
(+) :: Num a      => a -> a -> a
div :: Integral a => a -> a -> a
sin :: Floating a => a      -> a



Embedding

• Use explicit dictionary passing to support ad-hoc polymorphism


- Type checker chooses the correct instance when creating the dictionary


- Pattern matching on the dictionary constructor makes the class 
constraints available

data IntegralDict a where
  IntegralDict :: ( Integral a, Num a, Eq a ... )
               => IntegralDict a

class (Num a, IsScalar a) => IsNum a where
  numType :: NumType a

instance IsNum Int where
  numType = ...



GADTs

• How does the dictionary trick work?


- With a standard algebraic data type the following are equivalent:


- But, with GADTs this is not the case

foo :: Foo a -> a -> a
foo _       x = x+1

bar :: Foo a -> a -> a
bar (Foo _) x = x+1

data Foo a where
  Foo :: Num a => a -> Foo a



So far…

• Using types to guide the design


- Only supports operations we know how to execute on restricted hardware


- Stratification encodes the concept of data parallelism


• Type-safe, polymorphic operations


- GADTs for a “type safe evaluator” style representation


- Explicit dictionary passing to support ad-hoc polymorphism


• [Deeply] embedded languages reuse the host language syntax


- Smart constructors that build AST terms


- Overload standard typeclasses to reflect arithmetic operations



Properties in types
Encoding the type and scope of free variables



Surface language

• Our Acc and Exp terms are defined in Higher Order Abstract Syntax (HOAS)


- Use the binding constructs of the host language


• But…


- Does not explicitly represent variables


- Can not peek into function bodies: can only apply functions

foo :: Exp a -> Exp b
foo x = ...



Internal language

• Need an explicit representation of bound and free variable names


- Implies an explicit environment of bound terms


- Allows us to inspect function bodies (intensional analysis)

data PreOpenAcc acc aenv a where
  Avar :: Arrays a => Idx aenv a -> PreOpenAcc acc     aenv a
  ...

data PreOpenExp acc env aenv t where
  Var  :: Elt t    => Idx env t  -> PreOpenExp acc env aenv t
  ...

Can not depend on free scalar variables



Environments

• Environments keep track of what is in scope


- To simplify code generation, define the binding as only being in scope 
while evaluating the body (in contrast to Haskell, let is not recursive)

foo x =
  let w =
    let y = 42    in
    let z = y * 2 in
      x + y + z
  in
  w * x

scope of x

scope of y

scope of z

scope of w



Environments

• Environments keep track of what is in scope


• A heterogenous snoc-list


- Type: unit represents the empty environment, and the pair type for 
environments extended by an additional type


- Value: snoc-list of terms that form the environment, newest on the right

data Val env where
  Empty ::                 Val ()
  Push  :: Val env -> t -> Val (env, t)

Nested datatypes & 
polymorphic recursion 

precisely enforce 
constraints



De Bruijn indices

• A nameless way to represent variables


- No variable capture: alpha-equivalence is just syntactic equivalence


- Treat the environment as a stack of terms


- The de Bruijn index just counts its place in the stack

data Idx env t where                          -- a variable is either
  ZeroIdx ::              Idx (env, top)  top -- at the top of the env; or
  SuccIdx :: Idx env t -> Idx (env, junk) t   -- under some junk

Type list of terms 
in the environment

Can not create an index 
into an empty environment



De Bruijn indices

• Scalar function abstraction binds free variables


- These are only introduced as arguments to collective operations


- This restriction simplifies code generation: no closure conversion required

data PreOpenFun acc env aenv b where
  Lam  :: Elt a
       => PreOpenFun acc (env, a) aenv b
       -> PreOpenFun acc env      aenv (a -> b)

  Body :: Elt r
       => PreOpenExp acc env aenv r
       -> PreOpenFun acc env aenv r



De Bruijn indices

add :: Exp Int -> Exp Int -> Exp Int
add x y = x + y

add = \x -> \y -> PrimAdd numType `PrimApp` tup2 (x,y)

add = Lam (Lam (Body (
  PrimAdd (IntegralType ...)
  `PrimApp`
  Tuple (NilTup `SnocTup` (Var (SuccIdx ZeroIdx))
                `SnocTup` (Var ZeroIdx)))))

Introduce a new  
nameless variable

Wraps a de Bruijn index

:: PreOpenExp acc (((), Int), Int) aenv Int



De Bruijn indices

• Introduce a new nameless variable into the environment


- Let-nodes represent sharing of sub terms


- The type requires the binding is only in scope when evaluating the body

data PreOpenExp acc env aenv t where
  Var  :: Elt t => Idx env t -> PreOpenExp acc env aenv t

  Let  :: (Elt bnd, Elt body)
       => PreOpenExp acc env        aenv bnd
       -> PreOpenExp acc (env, bnd) aenv body
       -> PreOpenExp acc env        aenv body
  ...

Only in scope when 
evaluating the body



Environment projection

• How do we get a value out of the environment?


- Recall that the environment is a heterogenous list


- The index needs to recover both the position and type of the element

prj :: Idx env t -> Val env -> t
prj (SuccIdx idx) (Push env _) = prj idx env
prj ZeroIdx       (Push _   v) = v
prj _             Empty        = error "impossible"

Under some junk

At the top

why?

because Empty :: Val ()



Exercise: count the uses of each variable

• Traverse an expression searching for Var nodes


- Generate a fresh name for each new binding


- Use an environment to map names to counts

let x = 7       in
let x = x+1     in
let y = x*3 + x in
  x + y + 2

let v2 = 7         in
let v1 = v2+1      in
let v0 = v1*3 + v1 in
  v1 + v0 + 2

de Bruijn notation



Exercise: count the uses of each variable

type Name  = ...
data Count = Count { unique :: Int, counts :: Map Name Int }

data Ref env where
  Top  :: Ref ()
  Pop  :: Ref env -> Name -> Ref (env, s)

fresh :: State Count Name
touch :: Name -> State Count ()

lookupName :: Ref env -> Idx env t -> Name
lookupName (Pop _ n) ZeroIdx      = n
lookupName (Pop s _) (SuccIdx ix) = lookupName s ix

Similar to Val

encapsulate local 
mutable state

similar to prj



Exercise: count the uses of each variable

• Traverse the expression looking for Let and Var nodes


- Must begin with a closed expression

usesOf :: OpenExp env aenv t -> Ref env -> State Count ()
usesOf exp env = case exp of
  Let bnd body -> do
    var <- fresh
    usesOf bnd  env
    usesOf body (Pop env var)

  Var idx      -> do
    touch (lookupName env idx)

  ...



Summary

• We use GADTs to very precisely specify types

prj :: Idx env t -> Val env -> t
prj (SuccIdx idx) (Push env _) = prj idx env
prj ZeroIdx       (Push _   v) = v
prj _             Empty        = error "impossible"

data Idx env t where                            -- a variable is either
  ZeroIdx ::               Idx (env’, top)  top -- at the top of the env; or
  SuccIdx :: Idx env’ s -> Idx (env’, junk) s   -- under some junk

data Val env where
  Empty ::                  Val ()
  Push  :: Val env’ -> t -> Val (env’, t)



Executing embedded programs
Beyond the interpreter



Last time…

• Embedded languages


- Restricted languages


- Can reuse host language syntax (typeclass overloading)


- Host language can compensate for restrictions in the embedded language


• Encoding properties in types


- Use types to help guide a user in designing [data-parallel] programs


- Hardware restrictions require no nested arrays: use a separate language 
for scalar (Exp) vs. collective array (Acc) operations



Executing programs

• The type-safe evaluator interprets programs step-by-step


- Walk the AST recursively evaluating sub terms

eval :: Expr t -> t
eval (Const c)    = c
eval (Add e1 e2)  = eval e1 + eval e2
eval (Eq e1 e2)   = eval e1 == eval e2
eval (If p e1 e2) = if eval p then eval e1
                              else eval e2



Executing programs

• Instead of interpreting the expression


- Convert the program into a form suitable for, say, GPU execution


- Walk the AST generating C code or similar, then execute that code

run :: ExecOpenAcc aenv a -> Val aenv -> a
run (Map  objectcode gamma) aenv = ...
run (Fold objectcode gamma) aenv = ...
  …



Executing programs

• Now we have a runtime compiler!


- Since compilation happens at program runtime, having strong types in the 
embedded language means there are fewer possible runtime errors


- But, must deal with code generation, caching, linking, calling the compiled 
code …



Algorithmic skeletons

• Collective operations in Acc are templates encapsulating specific behaviour


- Parameterised by the scalar function they apply


- Instantiate the operation by providing types and scalar expressions at 
predefined points

void map
(

$type arrIn,
$type arrOut,
<other parameters>

){
for ( int i = 0; i < end; ++i ) {

x = arrIn[i];
       arrOut[i] = $function(x)

}
}

template 
holes

e.g. free variables

apply embedded 
scalar function



Static Single Assignment (SSA) form

• An intermediate representation where each variable is assigned exactly once, 
and every variable is defined before it is used


- Designed to make optimisations efficient for imperative languages


- A static property of program text, not a dynamic execution property

int relu( int v ) {
if (v < 0) {

v = 0
}
return v

}

if v < 0

return v

v <- 0

1

2

3

T F

CFG

if v < 0

u <- ɸ(0, v)
return u

    

1

2

3

T F

SSA



Static Single Assignment (SSA) form

• Closely related to the lambda terms used by functional programs


- SSA is Functional Programming 
Andrew Appel


- A Functional Perspective on SSA Optimisation Algorithms 
Manuel M. T. Chakravarty, Gabriele Keller, Patryk Zadarnowski


• We can translate our first-order scalar language directly into SSA form


- LLVM uses a statically typed intermediate representation in SSA form



Code generation

• Scalar code generation becomes a source-to-source translation


- Translation preserves type information


- Well typed source programs always generate well-typed target code


- The llvm-hs library contains the necessary C++ bindings to LLVM



Code generation

• Scalar code generation is a source-to-source translation


- Convert accelerate expressions into form closer to LLVM instruction set


- Lower type-level types into value-level types

(+1)

plus1 = Lam (Body (
  PrimAdd (IntegralNumType (…))
  `PrimApp`
  Tuple (NilTup `SnocTup` (Var ZeroIdx)
                `SnocTup` (Const 1))))

accelerate

data Instruction a where
 Add :: NumType a
     -> Operand a
     -> Operand a
     -> Instruction a

accelerate-llvm



Code generation

• Branches and loops require insertion of ɸ-nodes


- Need to create, keep track of basic block labels to use as branch targets

if-then-else

-- create a new basic block
newBlock :: String -> CodeGen Block

-- branch instructions return the block they came from
br  :: Block -> CodeGen Block
cbr :: IR Bool -> Block -> Block -> CodeGen Block

-- pick value depending on incoming edge
phi :: Elt a => [(IR a, Block)] -> CodeGen (IR a)

monad for fresh names, etc.



Runtime linking

• Finally, link the JIT compiled code into the running application


• We compile into a standard object file, rather than as a shared library


- ELF (*nix):	 	 	 /usr/include/elf.h


- MachO (MacOS):	 /usr/include/mach-o/loader.h


- COFF (Windows):	 ¯\_(ツ)_/¯ 



Mach-O file format

 ● Following the load commands, all Mach-O files contain the data of one or more segments. Each segment
contains zero or more sections. Each section of a segment contains code or data of some particular type.
Each segment defines a region of virtual memory that the dynamic linker maps into the address space of
the process. The exact number and layout of segments and sections is specified by the load commands
and the file type.

 ● In user-level fully linked Mach-O files, the last segment is the link edit segment. This segment contains
the tables of link edit information, such as the symbol table, string table, and so forth, used by the dynamic
loader to link an executable file or Mach-O bundle to its dependent libraries.

Figure 1 Mach-O file format basic structure

Header

Load commands

Data

Section 1 data

Section 2 data

Section 3 data

Section 4 data

Section 5 data

Section n data

Segment command 1

Se
gm

en
t  

1
Se

gm
en

t  
2

Segment command 2

Various tables within a Mach-O file refer to sections by number. Section numbering begins at 1 (not 0) and
continues across segment boundaries. Thus, the first segment in a file may contain sections 1 and 2 and the
second segment may contain sections 3 and 4.

When using the Stabs debugging format, the symbol table also holds debugging information. When using
DWARF, debugging information is stored in the image’s corresponding dSYM file, specified by the
uuid_command (page 19) structure

Header Structure and Load Commands
A Mach-O file contains code and data for one architecture. The header structure of a Mach-O file specifies the
target architecture, which allows the kernel to ensure that, for example, code intended for PowerPC-based
Macintosh computers is not executed on Intel-based Macintosh computers.

OS X ABI Mach-O File Format Reference
Overview

2009-02-04   |   Copyright © 2003, 2009 Apple Inc. All Rights Reserved.
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Relocations

• The process of assigning load addresses to position independent code


- updates addresses/offsets from relocating the object code


- resolving symbols to system library functions such as sin()



[demo]



Relocations

• The process of assigning load addresses to position independent code


- updates addresses/offsets from relocating the object code


- resolving symbols to system library functions such as sin()


• Intermediate jump islands can be used for > 32-bit displacement


- initial 32-bit displacement to the jmp island, followed by long jump to 
actual target address

0x0000000000000000    # target address
jmp *-14(%rip)        # relative instruction pointer



Summary

• Embedded domain specific languages are restricted languages


- Reduce effort by generating code that embodies specialised knowledge


- The embedding partly compensates for this restriction be seamlessly 
integrating with the host language


- The host language can generate embedded code


• Types can be used to…


- Encode properties and restrictions into the language


- This can statically prevent writing programs which can not be compiled


- Improve safety by eliminating sources of runtime failure



Accelerate

• Available on Hackage (hackage.haskell.org):


- Core language: accelerate


- CPU backend: accelerate-llvm-native


- NVIDIA GPU backend: accelerate-llvm-ptx


- Examples: accelerate-examples


• More information & short tutorial:


- http://www.acceleratehs.org


• Contributions welcome! ^_^

http://hackage.haskell.org
http://hackage.haskell.org/package/accelerate
http://hackage.haskell.org/package/accelerate-llvm-native
http://hackage.haskell.org/package/accelerate-llvm-ptx
http://hackage.haskell.org/package/accelerate-examples
http://www.acceleratehs.org/


fin.


